Buffering Walkthrough for IP Broadcast Traffic

Nemanja Kamenica
Technical Marketing Engineer
Cisco

Agenda

• Introduction - What is buffer?
• Buffer Architecture – VOQ and Egress buffer
• How buffer is used by unicast and multicast?
• How buffering affects my broadcast traffic?
• Implement QOS to protect broadcast traffic
Buffer

- Buffers on an ethernet switch
 - Traffic is sent from ingress to egress interface
 - It momentarily sits in buffer until it is scheduled to leave the egress interface
- When do buffers come into play
 - Speed Conversion
 - Traffic Bursts
 - Many to one communication

Queuing and Scheduling

- Queueing is logical operation separation traffic in buffer
- Scheduling is operation dequeuing traffic from a queue
- Queues are scheduled based on algorithm
- Some queues have scheduling priority over others
 - Strict priority queue
 - Regular queues
Buffer types

VOQ Buffer

- Majority (~90-98%) of buffer is attached to ingress ports (~2-10%), minor shared buffer is used by egress ports
- Suitable for large external buffer architecture (Big buffer switches)
- Ingress buffer is divided in Virtual Output Queues to simulate egress buffer and prevent Head of Line Blocking (HOLB)
- **Unicast traffic (most file based workflow) uses ingress large buffer**
- **Multicast traffic (most LIVE workflow) uses egress shared buffers (smaller)**
Ingress buffering for Broadcast traffic – Head of Line Blocking

- SMTP 2022-6, SMTP 2110, SMTP 2059 may be affected by HoLB that will affect multiple streams.

Output Queue Buffer

- Buffer is shared between egress ports, for both unicast and multicast traffic
- Dynamic buffer allocation to ports under congestion
- As every port has a N queues, no HoLB for unicast nor multicast
- Suitable for on chip buffer architecture
Buffers and Broadcast traffic - Jitter

- SMTP 2022-6, SMTP 2110, SMTP 2059 are multicast traffic streams
 - Requiring low latency and low jitter (jitter - change in latency)
- Jitter can be results of traffic buffering, where packets are delayed because of congestion

```
Steady Stream of packets
Time

Same Stream of packets after congestion
```

How much buffer is needed?

- Real time traffic should be forwarded immediately, without buffering for a long period that impacts latency and causes jitter
- A switch must have sufficient buffers to absorb burst of an application
- Dynamically shared buffer architecture, allows flexible use of buffer during burst and congestion, to provide optimal results
 - Queue-limit may be applied to ensure a single flow does not consume more than its fair share of buffers
Quality of Service

- Quality of Service can protect sensitive broadcast traffic
- Live production traffic can take strict priority queue or high priority queue
 - Strict priority queue/high priority queue will protect sensitive traffic by dequeuing it first and keeping latency and jitter minimal
- File based workflows can co-exist in the network, should take lower priority queue

Conclusion

- Multicast Traffic does not use Ingress Buffers to avoid HoLB
- ST2110 Traffic must be placed in high priority queue which is scheduled before any other traffic which avoids latency/jitter
- Other traffic (file based) is placed in a lower priority queue
- Proper QoS design ensures LIVE traffic is never impacted due to any congestion introduced by any other traffic
Thank you

Presenter Name, Organization
Email and phone number (recommended)

Thank you to our Media Partners

[Logos of SVG, SVG Europe, TVB Europe, and Cisco]