

NMOS IS-07 GPI Replacement and Much, Much More...

Miroslav Jeras, CTO Pebble Beach Systems

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019

What is IS-07?

- AMWA Interface specification
- Full name: AMWA IS-07 NMOS Event & Tally
- A protocol that allows a source to publish its state and communicate its state changes to subscribed receivers
- Published on GitHub:
 - https://github.com/AMWA-TV/nmos-event-tally
 - https://amwa-tv.github.io/nmos-event-tally/

GPI Signals

- What is the traditional GPI?
 - Electrical ON/OFF signal used by the sending device to trigger an action on the receiving device
 - Carried by a physical cable
 - Not very practical for modern IP environments
 - Impossible on virtualized platforms

pebble beach systems

GPI Replacement

- How does this translate into the modern IT world?
 - Logical (boolean) data type: true/false
 - Carried over the IP network
 - Formatted in a modern message format (JSON)
- But what about timing, networks introduce delays?
 - Messages contain a timing section with PTP (SMPTE ST-2059) based timestamps allowing for frame and sample accurate precision
 - Creation timestamp

Activation timestamp

- Origin timestamp
- pebble beach

ST-2059

true/false

JSON

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 3

5

Extending the GPIs

 Now that we have a nice JSON mes additional types available? – string – number 		essage, why not use "Amsterdam" 3.14159
 That's very nice, but how would a receiver what to expect? Type definition Value lists (enumerations) Ranges Units of measure 		a receiver know "John", "Frank", "Mike" -20°C – 100°C
systems		IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019

Example IS-07 Message and Type Definition

Transport Mechanisms

• We have the JSONs, but how do we carry them across the network?

MQTT

- Common IoT protocol
- Broker based
- One-to-many
- Scalable

WebSocket

- Existing NMOS protocol
- Brokerless
- One-to-one
- Optimal speed

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 7

Routing and Grouping

- So, how does all this fit together with the rest of NMOS?
 - IS-07 uses the NMOS object model
 - Extending the existing senders and receivers with new transports
 - IS-04 registration in the registry
 IS-04
 IS-05 connection management
 IS-05
 BCP-003-01 transport layer security
 BCP-003-01
- What about linking to the video and audio flows?
 - IS-07 resources are subject to BCP-002-01 Natural Grouping BCP-002-01
 - Signal metadata grouped with audio/video streams
 - Multiple IS-07 signals grouped together

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019

pebble beach systems

Use Cases – A Real-Life Project

- Metechno project tpc, Zurich, Switzerland
 - All-IP news, sports and technology centre for Swiss radio and television
- One of the main project requirements was the use of open standards:
 - NMOS IS-04 and IS-05 covered most of the RTP signal management requirements
 - There was a series of different requirements that were not covered by any open standards
 - IS-07 was in the process of approval at that time and it was proposed as a solution to those problems

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019

systems

beach

ebb

GPI triggers

- Problem:
 - Control of a downstream device (on/off)
 - Routing of the signal based on which machine is running the channel (main/backup/emergency)
- Solution:
 - Implementation of a Boolean IS-07 sender instead of a traditional GPI device
 - IS-05 routing of the signal, based on the input:
 - Name of the machine running the channel
 - Coming from the redundancy control logic, again as an IS-07 signal, this time string

Audio/Video Preview Selection

- Problem:
 - Selecting the preview location of audio and video within the playout server
 - Selecting the desired audio shuffle:
 - language (Original/German)
 - sound field (Stereo/surround)
- Solution:

b e a c h

ebbl

- Exposing the automation software panel buttons as Boolean receivers
 - Control system "presses" them
 - Allows for simultaneous remote and local control
 - All the redundant playout servers listen to the same signal
 - Easily extensible to any other automation system command if needed

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 11

systems

Automation Statistics Output

- Problem:
 - Exposing all the counters available in the automation system
 - Used by the control system and displayed on various devices
 - · Counter to next event, counter to next live, etc.
 - Flag to indicate overruns, potentially changing the colour on the display
- Solution:
 - A series of string senders containing the timecode and the direction for each of the counters

- The same redundancy pattern as for GPIs
 - · routing based on the name of the main machine

Potential for replacing the string with a standard timecode complex

object

Synchronizing the GUI and Monitoring

- Problem:
 - Automatic reconfiguration of the monitoring based on the active channel
 - The signals displayed on the multiviewer correspond to the channel being controlled from the automation client
- Solution:
 - A string sender exposing the name of the layout in the GUI
 - Once a layout name linked to a channel (e.g. SRF1, SRF2) is received, the control system remaps the multiviewer

 In the future, this could be achieved using generic control logic issuing IS-05 switches to an IS-05/IS-07 compatible multiviewer (see the Future Zone demo)

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 13

Network Port Status Logging (Telemetry)

- Problem:
 - Providing a constant stream of network port status measurements to the logging system and any other interested parties (e.g. network and/or broadcast controller)
- Solution:
 - A complex object sender with a payload that contains all the status data for all the interfaces on a node
 - Addresses
 - Datarates
 - Errors
 - Alarms

pebble beach – Anyone can subscribe to the sender

IS-07 - Swiss Army Knife for System Integration

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 ¹⁵

IBC 2019 IP Showcase Future Zone Demo

- Components:
 - Hardware button panel
 - Software button panel
 - Playout automation
 - Multiviewer
 - Signal probe
 - Control system
 - NMOS Registry

- Data types:
 - Boolean
 - Button press
 - Number
 - Enumeration
 - Colour (RBG value)
 - String
 - Text
 - Timecode
 - Image (encoded)

What is next?

- Standardizing device models:
 - What is expected from devices of a specific type?
- · Complex objects:
 - Type definition/validation
 - Incremental updates?
- More use cases and real-life projects

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 17

Thank you

Miroslav Jeras, Pebble Beach Systems (8.B68) miroslav.jeras@pebble.tv

Thank you to our Media Partners

s y s t e m s