Fundamentals of IP in Broadcast Production

Wes Simpson
Telecom Product Consulting
wes.simpson@gmail.com
+1 203 376 3372
https://www.telecompro.tv

Ed Calverley
Q3 Media Training
ed.calverley@q3media.co.uk
+44 20 3475 0250
https://q3mediatraining.co.uk

Agenda (90-minute Session)

- IP / Networking Basics
- Media Transport Over IP (ST 2110-10/20/30/40 Deep Dive)
- PTP: Timing & Synchronisation
- ST 2110-21 Traffic Shaping
- New parts of ST 2110 (ST 2110-22/23)
- ST 2022-7 Redundant Transport
- JT-NM TR-1001 / NMOS
Why IP?

• We must start by recapping the obvious!
• 2 main drivers for switching to IP Infrastructure:
 – Flexibility
 • Reconfigurable & infrastructure not limited by resolution/formats
 • Operational functions easier to relocate and evolve over time
 • More efficient architectures (don’t simply think about replacing SDI)
 • Software on generic IT servers rather than vendor-badged systems
 • may have to accept some compromises to change workflow
 – Costs > Use of more COTS hardware/software
 • minimise custom development and branched code makes systems easier to support
 • Up-front cost may not be lower (overall lifecycle costs may be lower)
 • Move to software-as-a-service (SaaS) – pay only for what you use when you need it!
COTS Confusion

COTS: Commercial Off-The-Shelf
- Defined Costs
- Standards based
- Choice (interoperable)
- Generic Features
- Stable
- Supported
- Upgradable

Proprietary / Bespoke System
- Variable Costs
- Vendor lock-in
- Interfacing/Conversion
- Custom Features
- Higher risk of issues
- Fixed function
- Limited/Costly to evolve

However:
- Not all IP hardware is equal
- Networking for broadcast media production is specialist
- Good system architecture & workflow planning is essential

The Rise of Software

- Dedicated Hardware still strong in production or wherever real-time processing with low-latencies are important
- Media processing with Software is growing in capability
- Software enables new architectures that don’t have equivalents in SDI
- Motivation for vendors is changing to create products which can be sold in scale
- IP Media Standards need to work for both software & hardware
IP is all about Packets!

SDI Signal Routing
- Dedicated wire per signal
- Routed via crosspoint switching

IP Signal Routing
- Multiple signals per wire
- Packet-level switching
- Full-Duplex (bi-directional)

SDI is a dedicated link with constant data rate
- SD-SDI: 270Mb/s
- HD-SDI: 1.5Gb/s
- 3G-SDI: 3Gb/s

Ethernet links can have higher data rate so more data can be carried in the same time
- 10GE: 10Gb/s
- 25GE: 25Gb/s
- 100GE = 4x25GE
- 40GE = 4x10GE

Data is sent in packets. Network Switches & Routers manage the sending of packets across the network.
How do we send data in packets?

- Prepare Data
- Choose Protocol
 - UDP
 - TCP
- Address it
- Send It

TCP Header

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence Number</td>
<td>Acknowledgement Number</td>
</tr>
<tr>
<td>Data Offset</td>
<td>Window Size</td>
</tr>
<tr>
<td>Total Length</td>
<td>Urgent Pointer</td>
</tr>
<tr>
<td>Options</td>
<td>Padding</td>
</tr>
</tbody>
</table>

UDP Header

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Checksum</td>
</tr>
</tbody>
</table>

- Link Handshaking
- Transmission Acknowledgments
- Automatic resend on packet loss
- Perfect for FILES

- ‘Fire & Forget’
- Minimal Data Overhead
- Simple error detection
- Perfect for REAL-TIME STREAMS
How do we send data in packets?

• Prepare Data
• Chose Protocol
 • UDP
 • TCP
• Address it
• Send It

Application Layer
Transport Layer
Internet Layer

Port: 20000
IP Address: 192.168.0.1
How do we send data in packets?

1. Prepare Data
2. Choose Protocol
 - UDP
 - TCP
3. Address it
4. Send It

- Application Layer
- Transport Layer
- Internet Layer
- Link Layer

Sending SDI Over an IP Network

Example: SMPTE ST 2022-6

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDI</td>
<td>Serial Digital Interface</td>
<td>SMPTE 259M, 292M, 424M</td>
</tr>
<tr>
<td>HBRMT</td>
<td>High Bitrate Media Transport</td>
<td>SMPTE 2022-6</td>
</tr>
<tr>
<td>RTP</td>
<td>Real-Time Transport Protocol</td>
<td>RFC 3550</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
<td>RFC 768</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol (v4/v6)</td>
<td>RFC 791 / RFC 2460</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control (e.g. Ethernet)</td>
<td>IEEE 802.3</td>
</tr>
</tbody>
</table>
UDP Multicast

Multicast allows a second device sending on the multicast group (same address/port)

239.10.0.25:20000

IP Camera

239.10.0.25:20000

Network Switch

IGMP Subscribe

IGMP v3 > Source Specific Multicast
IGMPv3 Introduced Source Specific Multicast (SSM) which ensures only multicast packets from a specific source address are received

Multicast address range to use SSM may be limited to 232.0.0.1/8

What are we sending?

SMPTE ST 2022-6

1 RTP flow

SMPTE ST 2110

2110-20 x 1

2110-30 x16 (e.g.)

2110-40 x 3 (e.g.)

~20 RTP flows
Media Transport over IP
SMPTE ST 2022-6 (‘SDI over IP’)

- Take entire SDI signal and encapsulate it in IP stream
 - Includes audio and embedded data signals
- Easy to maintain audio/video synchronization
 - Hard to process just one part of a stream
Media Transport over IP
SMPTE ST 2110

- Each media type in a separate packet stream
 - Easy to process individual components
 - Signals need to be resynchronized after processing
- PTP (Precision Time Protocol) used for packet timestamping

ST 2022-6 / ST 2110
Audio Processing Packet Flow

Using SDI/ST 2022-6

Using ST 2110
How Did We Get Here? – ST 2110 Evolution

Compressed

ST 2022-1,2

ST 2022-3,4

ST 2110-22

TR-01

Pro-MPEG CoP3

Uncompressed

ST 2110-10

ST 2110-20

ST 2110-30

ST 2110-40

ST 2110-10 System and Timing

ST 2110-20 Uncompressed Video

ST 2110-21 Video Stream Packet Shaping

ST 2110-30 Uncompressed Audio

ST 2110-31 AES3 Audio Streams

ST 2110-40 Ancillary Data
SMPE ST 2110 – Elements (NEW!)

- OV 2110-0 Roadmap for the 2110 Document Suite
- ST 2110-10 System and Timing
- ST 2110-20 Uncompressed Video
- ST 2110-21 Video Stream Packet Shaping
- ST 2110-22 Constant Bit-Rate Compressed Video
- RP 2110-23 Single Video Essence Transport over Multiple ST 2110-20 Streams
- ST 2110-30 Uncompressed Audio
- ST 2110-31 AES3 Audio Streams
- ST 2110-40 Ancillary Data

ST 2110-10
System Timing and Definitions

- Maximum UDP datagram size: 1460 octets, including UDP header
 - Extended UDP datagram allowed with up to 8960 octets
- SMPTE ST 2059-2 PTP Profile of IEEE 1588-2008
 - If interchanging audio with AES67, then compatible parameters must be used
- RTP timestamps are tied to the media
 - For video, RTP timestamps of all packets for video frame are the same
 - For real-time sources, this should represent the Image Capture Time
 - For SDI converters, RTP timestamp is moment when video frame alignment point arrives at device input (SMPTE ST2059-1 defines alignment points)
- All media clocks must have an offset of zero
 - This makes it easier to recover from loss of signal or unexpected system restart
ST 2110-20 Video Encapsulation

- Multiple video pixel groups (pgroups)
- RTP Payload Header applied
- Inserted into an RTP packet
- Placed into UDP packet
- IP packet header attached
- Wrapped into Ethernet Frame

• Same idea as before – just draw differently (and still not to scale!)
ST 2110-20 Pixel Groups

- Pixels formed into pgroups
 - pgroup size depends on sampling format
 - Must be integer number of octets
 - Pixels that share samples must be in the same pgroup

- Example: 4:2:2 10-bit
 - 2 pixels in 5 octets

Pixel Group Sizes

- Every supported video format listed in ST 2110-20 tables
 - Tables also include order of samples within each pgroup
ST 2110-20 Video Packet Header

- 32-bit Sequence Number (16 bit Sequence number would wrap in less than half a second for Gigabit-class payloads)
- Length of Sample Row Data = Number of octets from scan line in this datagram. Must be multiple of pgroup
- F = 0 for progressive scan and first field in interlace video
- F = 1 for second field in interlace video
- Video Line Number = Video scan line number, starts at 0 for first active line of video (note difference from SDI line numbering)
- C = 1 if more than one line is in datagram, set to 0 for last line in each datagram
- Sample Row Data Offset = Location of first pixel of payload data within scan line = 0 if first pixel in scan line; counts by pixels

ST 2110-20 Sample Row Data

- Packet 0
 - Sample Row 0
 - Offset 0
- Packet 1
 - Sample Row 0
 - Offset X
- Packet 2
 - Sample Row 0,1
 - Offset 2X, 0

Embedded Audio (HANC)

Ancillary Data (VANC)
ST 2110-30 Audio Encapsulation

- Multiple Audio Samples (16 or 24 bit)
- Grouped into one RTP packet
- Placed into UDP packet
- IP packet header attached
- Wrapped into Ethernet Frame

ST 2110-30 Audio

- Based on AES67
 - 48 kHz, 24-bit linear encoding must be supported in all devices
- Zero Offset Media Clock
 - Forces all media clocks to be tied to common time base
- Audio Channel Grouping
 - How audio channels relate to each other in a stream
- Receiver Classifications
 - Three levels of receiver performance
- Packet size limit \(1440 = 1460 - (12 \text{ (RTP)} + 8 \text{ (UDP)})\)
- No need for SIP or other connection management
Importance of “ptime”

- Audio streams are divided into fixed duration packets
 - Common size is 1 msec, signaled using “a=ptime:1” attribute
- Number of samples from a channel depends on sampling rate
 - For example, 48 kHz has 48 samples in 1 msec
 - Each sample could be 2 bytes (16 bit audio) or 3 bytes (24 bit audio)
 - Thus, 1 msec of 48 kHz, 24-bit audio is 48 * 3 = 144 bytes
- Number of channels in a packet limited by payload size
 - Total RTP audio payload is 1440 bytes
 - Jumbo frames not allowed for audio

ST 2110-30 Receiver Classifications

<table>
<thead>
<tr>
<th>Required Sampling Rates and Packet Times</th>
<th>A</th>
<th>AX</th>
<th>B</th>
<th>BX</th>
<th>C</th>
<th>CX</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 KHz, 1 msec</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>48 KHz, 125 μsec</td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>96 KHz, 1 msec</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 KHz, 125 μsec</td>
<td></td>
<td>8</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ST 2110-30 Audio
Channel Grouping Symbols

<table>
<thead>
<tr>
<th>Channel Grouping Symbol</th>
<th>Quantity of Audio Channels in group</th>
<th>Description of group</th>
<th>Order of Audio Channels in group</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>Mono</td>
<td>Mono</td>
</tr>
<tr>
<td>DM</td>
<td>2</td>
<td>Dual Mono</td>
<td>M1, M2</td>
</tr>
<tr>
<td>ST</td>
<td>2</td>
<td>Standard Stereo</td>
<td>Left, Right</td>
</tr>
<tr>
<td>LfRt</td>
<td>2</td>
<td>Matrix Stereo</td>
<td>Left Total, Right Total</td>
</tr>
<tr>
<td>51</td>
<td>6</td>
<td>5.1 Surround</td>
<td>L, R, C, LFE, Ls, Rs</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>7.1 Surround</td>
<td>L, R, C, LFE, Lss, Lrs, Lrs</td>
</tr>
<tr>
<td>222</td>
<td>24</td>
<td>22.2 Surround</td>
<td>Per SMPTE ST 2036-2, Table 1</td>
</tr>
<tr>
<td>U01...U64</td>
<td>Undefined</td>
<td>Unn where nn is the number of channels in group</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

ST 2110-31 AES3 Audio Streams

• AES3 streams can be used for non-PCM audio applications
 – Dolby E Compressed Audio is one common application
 – Other signals defined in SMPTE ST 337/338 (e.g. AC-3 compressed audio)
 – Has also been used for non-linear audio, one-bit audio and SACD
 – Also know as AES/EBU Audio

• For these applications, transparent carriage across IP is a must
 – Cannot change any bits within the stream
 – Data cannot be interpreted as uncompressed linear audio signals

• ST 2110-31 should NOT be used for linear 16-bit or 24-bit audio
 – Those should be carried using ST 2110-30 packet streams
ST 2110-31 Packet Format

- Based on AM824 data format
 - 32 bit sub-frames, each with 8 bits of signaling and 24 bits of data
 - Can hold all data plus signaling bits from AES-3 (B, F, P, C, U, V)

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>X</th>
<th>CC</th>
<th>M</th>
<th>PT</th>
<th>RTP Sequence Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time Stamp (32 bits)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Synchronization Source (SSRC) Identifier</td>
</tr>
<tr>
<td>B,F,P,C,U,V data bits</td>
<td>AM824 sub-frame 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,F,P,C,U,V data bits</td>
<td>AM824 sub-frame 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B,F,P,C,U,V data bits</td>
<td>AM824 sub-frame 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ST 2110-40 Ancillary Data

- Extract ancillary data packets from VANC or HANC
 - Captions, time code, ad triggers, etc.
 - Place them into RTP packets with custom header
- Line numbers are based on SDI line numbering
 - Don’t match 2110-20 line numbers
ST 2110-40 ANC Packet Format

- Each ANC packet in the RTP payload has its own header
- Color channel flag: C=1 – ANC packet is from HD color difference channel. C=0 in all other cases
- Line Number and Horizontal Offset refer to SDI raster values
- S=1 Multiple streams comprise the format of the original video signal containing the ANC packets
- Stream number indicates where the ANC packets were located within a multi-stream signal
- DID, SDID, Data Count, Packet Payload and Checksum are exact 10-bit values from ANC packet
- For each ANC packet within the RTP payload, padding makes the total number of bits a multiple of 32

<table>
<thead>
<tr>
<th>C</th>
<th>Line Number (11 bits)</th>
<th>Horizontal Offset (12 bits)</th>
<th>S</th>
<th>Stream Num (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DID (10 bits)</td>
<td>SDID (10 bits)</td>
<td>Data Count (10 bits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANC Packet Payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANC Packet Payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padding to 32 bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SDP – Session Description Protocol

- Standardized format for describing video and audio content
 - RFC 4566
- Provides key data needed to process content
 - Structural metadata for each type of media stream
 - Connection information for each stream
 - Clock and timing information
 - Stream associations for closely coupled streams (ST 2022-7 hitless and RP 2110-23 subdivided streams)
- Text file
 - Can be accessed through NMOS APIs, other means
Parts of a Session Description

Session Information

Timing Information

Media Information

Connection Information

SDP Example

v=0
o=wes 203763372 89 IN IP4 10.201.33.19
s=Example of a 1080i29.97 video signal
t=0 0
m=video 31008 RTP/AVP 101
c=IN IP4 239.201.33.11/32
a=source-filter: incl IN IP4 239.201.33.11 10.201.33.19
a=rtpmap:101 raw/90000
a=fmtp:101 sampling=YCbCr-4:2:2; width=1920; height=1080; interlace; exactframerate=30000/1001; depth=10; TCS=SDR; colorimetry=BT709;
PM=2110GPM; SSN=ST2110-20:2017;
a=mediaclk:direct=0
Time / Synchronisation

- Synchronous signals are essential for production to allow clean-switching/mixing and capture to a common timebase

Date <> Time-of-day <> Frequency <> Phase

- **SMPTE-309M**
- **SMPTE-12M**
- **B&B/Tri-Level Sync**

- ‘Offline’
- ‘Real-time’

 (genlock)
Time / Synchronisation

- **PTPv2 (IEEE 1588-2008)**
 - Defines mechanism for accurately setting a local clock via exchange of a few simple messages
 - PTP timestamps are 80-bits in size: 48 bits Seconds : 32 bits nanoseconds
 - Can handle all our needs from Date/Time Timecode through to Frequency (Genlock)
 - PTP Profiles defined by **AES67 / SMPTE 2059-2**
 -(see AES-R-16-2016 for compatibility recommendations)

- **Epoc 1970-01-01 00:00:00**

 - **NTP** – accuracy ~200 micro seconds
 - **PTP** – accuracy ~1 micro second

 ![Image of PTP Architecture](image-url)

 PTP ensures all slaves have the same time regardless of their distance (signal transit time) from the master

We learned from Y2K! 48bits is approx. 9 million years!
1-Step Sync with End-to-End Delay

- **Sync Message:**
 - “The time now is XX:XX” (sec:nanosec.)
 - If slave immediately updated clock to be the time in the sync message (T1), it would still be offset equal to the time taken for the message to transit the link

- **Delay Request & Response:**
 - Measures time taken to transit network link
 - Assumes symmetrical delay

PTP Implementation Options

Time-Stamping Mechanism

- **1-Step**
 - Accurate timestamp written into packet at the point of egress
 - Requires precision hardware implementation

- **2-step**
 - Message formed and passed to hardware for egress
 - Actual time of egress reported and inserted in a follow-up message

- **Messages affected:**
 - Sync Message
 - Peer Delay Response Message *(will cover later!)*
2-Step Sync with End-to-End Delay

- **Sync Message:**
 - “The time now is XX:XX” (sec:nanosec.)
 - If slave immediately updated clock to be the time in the sync message (T1), it would still be offset equal to the time taken for the message to transit the link
 - Actual time of egress sent in a follow-up message

- **Delay Request & Response:**
 - Measures time taken to transit network link
 - Assumes symmetrical delay

PTP Architecture

- **Unicast Mode**
- **Multicast Mode**
- **Mixed Mode (Hybrid)**
PTP Architecture

- Unicast Mode
- Mixed Mode (Hybrid)
 \textit{Sync/Follow-up Multicast}
 \textit{Delay Req/Resp Unicast}
- Multicast Mode

All messages Multicast
Delay Req/Resp ignored by other slaves
Passive Network Switches

- Any network switch which is not ‘PTP-Aware’
- Variable delay can be introduced as messages transit
- QoS can be used to improve performance
- The assumption of symmetry used in the End-2-End delay mechanism can result in clock jitter
- Passive switches can be used but their impact needs to be considered
IEE 1598-2008 defines the following device Types

- **Ordinary Clock**
 - Device with a single PTP port, can be grandmaster-capable or can be slave-only

- **Boundary Clock**
 - has multiple PTP ports, synchronises network segments

- **End-to-End Transparent Clock**
 - has multiple PTP ports, modify timestamps in PTP messages
 - residence times measured/added to the correctionField of Sync / Delay_Req (one-step) or Follow_Up / Delay_Resp (two-step)

- **Peer-to-Peer Transparent Clock**
 - has multiple PTP ports, modify timestamps in PTP messages
 - residence times plus egress-link delays measured/added to the correctionField of Sync (one-step) or Follow_Up (two-step) messages

- **Management Node**

Boundary Clock Network Switch

![Boundary Clock Network Switch Diagram](image-url)
Boundary Clock Network Switch

- One port on the network switch will be a PTP Slave
- All other ports become PTP Master
- Provides independent links to downstream clocks
- Allows expansion through multiple tiers and with common grandmaster
- Individual links use End-to-End delay mechanism

Transparent Clock Network Switch

2 functional modes:
- End-2-End
- Peer-2-Peer

Peer-2-Peer delay mechanism also requires slaves to be appropriately configured
PTP Implementation Options

Delay Mechanism

• **End-to-End**
 – Slave measures the delay between itself and the master
 – Messages: Delay_Req / Delay_Resp

• **Peer-to-Peer**
 – Each network element measures the delay between its port and the device on the other end of the link
 – Measured delays for each network element added to SYNC message as it transits between master and slave
 – Messages: Pdelay_Req / Pdelay_Resp (+Follow-up for 2-step)

Transparent Clock (TC) Network Switch (E2E)

• PTP messages can be modified on the way through the switch

• ‘**Residence Time**’ (the time spent in the switch) is measured and added to the correction field in PTP message:
 – 1 Step: Sync / Delay_Req
 – 2-Step: Follow_up / Delay Resp

• Each TC **adds** its measured value to correction field value (i.e. tracks the cumulative delay)
Transparent Clock (TC) Network Switch (P2P)

- Peer-2-Peer Delay Mechanism
- Sends/responds to Peer Delay Request messages on each port to assess delay on local link
- Residence Time + Peer Delay on Ingress Link added to Correction Field

Real Networks
Electing a Grandmaster

- Best Master Clock Algorithm (BMCA) is used to elect a Grandmaster
- attributes are evaluated in the following order:
 - Priority 1 (lowest number wins)
 - Clock Class (GPS, free-run, etc)
 - Clock Accuracy (accuracy to UTC)
 - Clock Variance (jitter and wander)
 - Priority 2 (lowest number wins)
 - GMID (similar to mac address)
- These attributes are advertised in the PTP Announce Message (typically 1 - 4 per second depending on config)
- NB: all other equipment should be set to be PTP Slave only to prevent accidental election of inappropriate masters
Switching Packets Requires Buffering
Wireshark captures showing some 2110-20 flows from different hardware devices

Software processes typically work with frame buffers so this could get a lot worse!

2110-21 Traffic Shaping
Networking Detail
ST 2110-21 Timing Models

- Senders can’t burst out all of their data at once
 - Overloads receivers and network switch buffers
- Some variability is necessary
 - HANC/VANC gaps, software-based senders

Two Constraints for ST 2110-20 Senders

- Network Compatibility Model
 - Ensures streams will not overflow buffers inside network devices
 - Scaling factor β of 1.1 means buffers drain 10% faster than they fill
- Virtual Receiver Buffer Model
 - Buffer is modelled as input of every receiver device
 - Note: Must be included in end-to-end system delay
 - Packets read from buffer perfectly, based on video format
 - Buffer not allowed to overflow or underflow
- All senders must comply with both models
ST 2110-21 Gapped, Linear Packet Schedules

- **Type N (Narrow)**
 - designed for real-time capture and processing
 - Maximum required receiver buffer is about 9 packets in gapped mode
 - Model assumes T_{OFFSET} of a couple of video lines from SMPTE Epoch
 - Small buffer means limited delay passing through each device in systems
 - Pixels inside packets “roughly” in sync with pixels in SDI

- **Type NL (Narrow Linear)**
 - linear version of N
 - no gaps corresponding to SDI VANC

- **Type W (Wide)**
 - designed to support software-based video sources
 - Maximum receive buffer is 720 packets in some popular formats
 - Larger buffer can handle packet bursts more easily
 - Bursty transmission is more common to software-based senders
ST 2110-21
Sender/Receiver Compatibility

<table>
<thead>
<tr>
<th>Receiver Type</th>
<th>Type N Sender</th>
<th>Type NL Sender</th>
<th>Type W Sender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type N Synchronous Narrow</td>
<td>Mandatory</td>
<td>Optional</td>
<td>No</td>
</tr>
<tr>
<td>Type W Synchronous Wide</td>
<td>Mandatory</td>
<td>Mandatory</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Type A Asynchronous</td>
<td>Mandatory</td>
<td>Mandatory</td>
<td>Mandatory</td>
</tr>
</tbody>
</table>

- Synchronous Receivers must have clock locked to Sender
- Synchronous Narrow Receivers are only required to work with Senders that use the default TROFFSET

New parts of 2110
Forthcoming: SMPTE ST 2110-22

- Current Title:
 “Professional Media over Managed IP Networks:
- Constant Bit-Rate Compressed Video”
 – Supports CBR compression formats such as VC2
 – Must be a registered RTP media type as per RFC 4855
 – RTP Clock rate of 90 kHz
 – Must conform to either “NL” or “W” network compatibility model of ST 2110-21; virtual receiver buffer model does not apply

Forthcoming: SMPTE ST 2110-22

- Visually lossless compression cannot be seen by observer
 – Some data must always be removed
 – Done so as to be invisible to human viewer
 – Can have very low latency – using slice-based compression

- Popular codecs available
 – VC-2 DIRAC from BBC – RFC 8450
 – Also JPEG XS – draft-lugan-payload-rtp-jpegxs-01

- 2:1 to 8:1 compression ratios
 – 3Gbit/s SDI compressed to 1.5 to 0.5 Gbit/s
Forthcoming: SMPTE ST 2110-22
SDP for ST 2110-22

- Format parameters (a=fmt) statement must include
 - Image height in lines
 - Image width in pixels
 - TP of either 2110TPNL or 2110TPW
 - Optional value of CMAX if different from default

- Bit rate parameter “b=AS:<bandwidth>“ must be included
 - Bandwidth is in kilobits/second calculated over one frame period

- SDP must include a frame rate statement, either
 - a=framerate xx.yy (as a decimal number)
 - exactframerate=M/N (as a ratio of two integers) in “fmtp”

Forthcoming: SMPTE RP 2110-23
Recommended Practice

- Working Title:
 “Single Video Essence Transport over Multiple ST 2110-20 Streams”

- Idea is to have a system where multiple low-bandwidth streams can be used to transport one high-bandwidth signal
 - High resolution streams, such as UHD1/4K or UHD2/8K
 - High frame rate streams, such as those over 100 fps
 - Also known as “multiport”

- Each sub-stream is a valid ST 2110-20/2110-21 stream
 - Timestamps tied to original frames
 - Comply with timing models
Three Methods to Split Stream

1. Temporal De-Interleave
2. Square Division
3. Two-Sample Interleave

2022-7 Redundant Transport
2022-7 Hitless Protection Switching

- Send identical signal on two separate paths
 - Identical packet timestamps, sequence numbers
 - Receiver aligns packets using buffer
 - Transit time equal to delay of longest path

- SMPTE 2022-7 Standard
 - “Seamless Protection Switching of SMPTE ST 2022 IP datagrams”
 - Published 2013

Route Diversity using ST 2022-7

- Diverse routes with SMPTE ST 2022-7 Hitless Protection Switching
Standards & Bodies (Related to 2110)

Industry Bodies
- EBU: European Broadcasting Union
- AMWA: Advanced Media Workflow Association
- VSF: Video Services Forum
- IABM

Industry Bodies with working groups defining specifications
- EBU
- AMWA
- VSF
- IABM

Standards
- EBU
- AMWA
- SMPTE
- AES: Audio Engineering Society

Standards
- General
- IETF: Internet Engineering Task Force
- IEEE: Institute of Electrical and Electronics Engineers

Copyright 2019 - No part of this presentation may be reproduced or repurposed without permission of the authors: telecompro.tv / Q3 Media Ltd.
JT-NM TR-1001-1:2018 v1.0

“System Environment and Device Behaviours for ST 2110 Media Nodes in Engineered Networks – Networks, Registration, and Connection Management”

- The goal of this document is to enable the creation of network environments where an end-user can take delivery of new equipment, connect it to their network, and configure it for use, with a minimum amount of human interaction.

EBU: “The Technology Pyramid for Media Nodes”

The minimum stack of endpoint technologies to build an IP-based media facility

- **MEDIA TRANSPORT**
 - Single link video (ST 2110-20)
 - Software-friendly video receivers (ST 2110-21)
 - Multichannel, low-latency audio (ST 2110-30)
 - Stream protection (ST 2022-7)

- **DISCOVERY & CONNECTION**
 - Discovery and registration (AMWA IS-04)
 - Connection management (AMWA IS-05)
 - Audio mapping (AMWA IS-08)
 - Topology discovery (LLDP)

- **TIME & SYNC**
 - PTPv2 configurable within SMPTE/AES profiles
 - Multi-interface PTP redundancy
 - Synchronisation of A/V and data essences

- **CONFIG & MONITORING**
 - IP Assignment (DHCP)
 - Open configuration management (e.g. API, config file, SSH CLI etc.)
 - Open monitoring protocol (e.g. syslog, agent, SNMPv3 etc.)

- **SECURITY**
 - Security tests (EBU R 148)
 - Security safeguards (EBU R 143)
 - Secure HTTPS API calls

NMOS

• A set of specifications/protocols created by AMWA’s Network Media Incubator working group
• Developed since 2015 alongside standardisation of SMPTE ST-2110 (which evolved out of VSF’s TR-03 format)
• Modelled around concepts outlined in JT-NM’s Reference Architecture document published at IBC 2015 (http://jt-nm.org/RA-1.0/)

https://amwa-tu.github.io/nmos/

IS-04 Discovery & Registration

• Keeping track of all the flows, what is generating them, and what can consume them
• Protocols defined for both Peer-to-Peer discovery and discovery via central Registry
• mDNS discovery (within subnet)
• HTTP-based protocols for Node/Registration/Query API’s (JSON payload)
• Flow properties/parameters via SDP file (RFC 4566)
IS-04 Discovery & Registration

- **API’s defined by IS-04**
 - Node
 - Registration
 - Query
- **All devices should be PTP locked**

IS-05 Discovery & Registration

- **IS-05 works alongside IS-04 to provide mechanism to configure senders & receivers**
- Commands can be ‘staged’ before making ‘active’ *(e.g. to allow validation)*
- Support for applying immediately or with time offset
- **Single / Bulk mechanism** *(e.g. Salvo routing)*
IS-06 Network Control

- IS-06 is an API for interfacing to an SDN controller (e.g. when using software defined network routing instead of standard IGMP-based multicast routing)

IS-07 Event & Tally

- Mechanism to emit and consume states and state changes issued by sources
- ‘GPI for IP’ – General purpose interfacing for buttons/knobs/sliders/displays/lights
- Extensible to carry additional data/values (potentially much more than triggers & tallies!)
- Clients subscribe to message queues (MQTT / Websockets)
- Small message size with very low-latency
- Multiple option timestamps for tracking action/effect times
- Signalling device reboot/shutdown (in addition to general purpose state messages)
Network Media Open Specifications

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Spec Status</th>
<th>Version(s)</th>
<th>Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-04</td>
<td>Discovery & Registration</td>
<td>AMWA Specification (Stable)</td>
<td>v1.3 / v1.2.2 / v1.1.3</td>
<td>nmos-discovery-registration</td>
</tr>
<tr>
<td>IS-05</td>
<td>Device Connection Management</td>
<td>AMWA Specification (Stable)</td>
<td>v1.1 / v1.0.2</td>
<td>nmos-device-connection-management</td>
</tr>
<tr>
<td>IS-06</td>
<td>Network Control</td>
<td>AMWA Specification</td>
<td>v1.0</td>
<td>nmos-network-control</td>
</tr>
<tr>
<td>IS-07</td>
<td>Event & Tally</td>
<td>AMWA Specification</td>
<td>v1.0.1</td>
<td>nmos-event-tally</td>
</tr>
<tr>
<td>IS-08</td>
<td>Audio Channel Mapping</td>
<td>AMWA Specification</td>
<td>v1.0</td>
<td>nmos-audio-channel-mapping</td>
</tr>
<tr>
<td>IS-09</td>
<td>System</td>
<td>Work In Progress</td>
<td></td>
<td>nmos-system</td>
</tr>
<tr>
<td>IS-10</td>
<td>Authorization</td>
<td>Work In Progress</td>
<td></td>
<td>nmos-authorization</td>
</tr>
<tr>
<td>MS-04</td>
<td>ID & Timing Model</td>
<td>Work In Progress</td>
<td></td>
<td>nmos-id-timing-model</td>
</tr>
<tr>
<td>BCP-002-01</td>
<td>Natural Grouping</td>
<td>AMWA Specification</td>
<td></td>
<td>nmos-grouping</td>
</tr>
<tr>
<td>BCP-003-01</td>
<td>API Security: Communications</td>
<td>AMWA Specification</td>
<td></td>
<td>nmos-api-security</td>
</tr>
<tr>
<td>BCP-003-02</td>
<td>API Security: Authorization</td>
<td>Work In Progress</td>
<td></td>
<td>nmos-api-security</td>
</tr>
<tr>
<td></td>
<td>Parameter Registers</td>
<td>Continuing</td>
<td></td>
<td>nmos-parameter-registers</td>
</tr>
</tbody>
</table>

JT-NM TR-1001 / NMOS at IBC 2019

Successfully met test criteria at interop event held prior to NAB 2019

Successfully met test criteria at interop event held prior to IBC 2019

Manufacturers who have implemented NMOS ('Self-certified')

Full list of both tests and successful participants here: http://jt-nm.org/jt-nm_tested/

Copyright 2019 - No part of this presentation may be reproduced or repurposed without permission of the authors: telecompro.tv / Q3 Media Ltd.
Thank you

Wes Simpson
Telecom Product Consulting
wes.simpson@gmail.com
+1 203 376 3372
https://www.telecompro.tv

Ed Calverley
Q3 Media Training
ed.calverley@q3media.co.uk
+44 20 3475 0250
https://q3mediatraining.co.uk

Thank you to our Media Partners

Thank you