Synchronization of ST 2110 Audio

- Andreas Hildebrand –
 RAVENNA Technology Evangelist
 ALC NetworX, Munich

Andreas Hildebrand, RAVENNA Technology Evangelist
- more than 25 years in the professional audio / broadcasting industry
- graduate diploma in computer science
- R&D, project & product management experience
- member of AES67 TG and ST2110 DG

ALC NetworX GmbH, Munich / Germany
- established 2008
- R&D center
- developing & promoting RAVENNA
- Partnerships with > 40 manufacturers

RAVENNA
- IP media networking technology
- designed to meet requirements of professional audio / broadcasting applications
- open technology approach, license-free
- fully AES67-compliant (built-in)
Timing & Synchronization – General Requirements

- Media bit-transparency
 → no sample rate conversion
 → streams need to run on same media clock
- Concurrent operation of different sample rates on same network
- Determinable (low) end-to-end latency
- Time alignment between media streams
- Replacement for “house clock” distribution (word clock, black burst etc.)

 ⇢ Clock reassembly from stream data not appropriate
 ⇢ Distribution of master clock beats not sufficient
 ⇢ Common understanding of absolute time required (“wall clock”)

Timing & Synchronization – Accuracy Requirements

- Audio applications have highest time accuracy & precision demands:
 ⇢ Sample accurate alignment of streams (± ½ sample)
 - @ 48 kHz: ± 10 µs
 - @ 96 kHz: ± 5 µs
 - @ 192 kHz: ± 2.5 µs
 ⇢ “Distribution” of word clock reference
 (AES11 calls for ± 5% max jitter / wander):
 - @ 48 kHz: ± 1 µs
 - @ 96 kHz: ± 500 ns
 - @ 192 kHz: ± 250 ns
Synchronization & Media Clocks

- All nodes are running local clocks
- Local clocks are precisely synchronized to a common wall clock via IEEE 1588-2008 (PTPv2)
- PTPv1 standardized by IEEE in 2002 (IEEE 1588-2002)
 PTPv2 followed in 2008 (IEEE1588-2008)
 PTPv1 and PTPv2 are not compatible!

- Media clocks are generated locally from synchronized local clock
Synchronization & Media Clocks

- All nodes are running local clocks
- Local clocks are precisely synchronized to a common wall clock via PTP
- Media clocks are generated locally from synchronized local clock
- Generation of any desired media clock (sample rate) possible
- Concurrent operation of different media clocks possible
- Phase accuracy of AES 11 (± 5% of sample period) achievable by deployment of PTP-aware switches (BC or TC)
- Synchronization across facilities possible by reference to absolute time (TAI / GPS)
- Essence data (audio samples or video frames) is related to the media clock upon intake - essentially receiving a generation “time stamp” with respect to the media clock
Synchronization & media clocks

- 3 type of clocks in the system:
 - Wall clock - provided by Grandmaster
 - local copy of the wall clock in each node
 - Media clock – derived from the local clock (i.e. 48 kHz for audio, 90 kHz for video)
 - RTP clock (stream clock) – derived from the media clock

- Offset \(R \) is established on stream start-up
- \(R \) may be random to defeat crypto-text attacks
- This offset will be constant throughout the stream’s lifetime

- The offset \(\text{(R)} \) will be conveyed via SDP \(\text{a=mediackl:direct=<offset>} \) – must be “0” in ST2110
RTP Packets (Layer 5)

- Consist of RTP header, optional payload headers and the payload itself
- **RTP header** (overhead) = 12 bytes, **payload** (linear audio data) = up to 1440 bytes
- **RTP Timestamp** = media clock counter (for linear PCM audio) = 32 bits (4 bytes)

Diagram:

- 12 Bytes
- Ver | P | X | CC | M | Payload Type | Sequence Number
- 0 | 4 | 8 | 12 |
- Timestamp
- Source Synchronization Identifier (SSRC)
- Options + Padding (optional)
- Audio Data
 - or
 - Video Data

Synchronization & Media Clocks

- All nodes are running local clocks
- Local clocks are precisely synchronized to a common wall clock via PTP
- Media clocks are generated locally from synchronized local clock
- Generation of any desired media clock (sample rate) possible
- Concurrent operation of different media clocks possible
- Phase accuracy of AES 11 (± 5% of sample period) achievable by deployment of PTP-aware switches (BC or TC)
- Synchronization across facilities possible by reference to absolute time (TAI / GPS)
- Essence data (audio samples or video frames) is related to the media clock upon intake - essentially receiving a generation “time stamp” with respect to the media clock
- Fixed / determinable latency by configuring a suitable link offset (“playout delay”)
- Inter-stream alignment by comparing and relating the time stamps of individual essence data
How to synchronize streams across various processing stages

- **Problem:**
 - Any stream leaving a (processing) device is a new stream
 - New alignment of (processed) essence to wall clock time
 - Alignment of original essence is lost

- **Possible solutions:**
 - Use of original time alignment for new stream (RTP timestamps adjusted to those of original essence)
 - Offset increases, might be too large for downstream Rx buffer
 - Which timestamps serve as reference when mixing essence?
 - How does the (processing) host now the exact relationship between ingress / and egress essence?
 - Carry origin timestamps as in-band meta data
 - Requires new payload format (audio essence data + audio meta data), or
 - Needs to make use of (experimental) RTP header extensions mechanism (which in turn may result in variable / decreased audio payload segments)
 - Carry origin timestamps as out-of-band meta data
 - Requires new standard (in the works → AES X242!)
How to synchronize streams across various processing stages

- **Problem:**
 - Any stream leaving a (processing) device is a new stream
 - New alignment of (processed) essence to wall clock time
 - Alignment of original essence is lost

- **Intermediate (?) / current solution:**
 - Leave alignment task to management layer (i.e. Broadcast Controller)
 - Devices report processing delays to BC (or have fixed / configurable delays)
 - BC configures required Rx delay for subsequent stages (playout delay)
Thank you for your attention!

Contact information:

Andreas Hildebrand
Technology Evangelist
ravenna@alcnetworx.de

ALC NetworX GmbH
Am Loferfeld 58
81249 Munich
Germany

www.ravenna-network.com

IP SHOWCASE THEATRE AT IBC – SEPT. 14-18, 2018
A. Hildebrand: Synchronization of ST 2110 Audio